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This article examines the concept of utilizing the thermal attenuation characteristics of
porous matrices and their thermal flywheel effect in damping the air temperature fluctua-
tions for highly temperature-sensitive applications. The mathematical formulation of the
problem in a dimensionless form is presented together with the relevant boundary condi-
tions. The periodic temperature solution at a given matrix section has shown that the
amplitude will be reduced by a logarithmic decrement and that the temperature cycle
possesses a phase angle lag which depends on various flow and material properties, as well
as the frequency of the temperature fluctuations. The effect of different material proper-
ties for porous matrix selection was examined by a numerical example.

l. Introduction

One of the major operation requirements for the frequency
and timing subsystem for the Deep Space Network tracking
antennas is the installation of a highly temperature-sensitive
hydrogen maser oscillator to keep the microwave energy at a
stable frequency. The maser oscillator is kept at a fixed pre-
determined temperature and is enclosed by several shields to
isolate it from the effects of ambient temperature fluctuations.
The hydrogen maser is housed in a special room which is
air-conditioned by a conventional air-handler (fan-coil) unit.
However, the system is thermally controlled to tolerate a very
small periodic temperature fluctuation. This thermal protec-
tion was imposed in order to limit the operational frequency
variations or drift to a minimum.
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Although the early temperature control design of the air
conditioner of the maser room was satisfactory, a better
refinement of the temperature control has recently been
sought to improve the system’s operationability. Currently,
several solutions are being investigated to reduce the frequency
and temperature drifts due to the fluctuating room occupancy,
maser wattage, ambient temperature, and solar irradiancy.

One of the suggested solutions is to let the conditioned air
leaving the fan-coil unit pass through a porous matrix acting as
a thermal flywheel which damps the temperature fluctua-
tions up to the desired degree. This article addresses the
mathematical analysis of the problem and the correlation
between the relevant parameters. The objective is to obtain a



solution for the temperature distribution of an unsteady one-
dimensional flow with constant transport properties through a
porous matrix in which conduction and convection play a
major role. Of major concern to the designer is the tempera-
ture profile at the fluid exit section, whereafter the fluid is
directed to the maser oscillator. After the problem is analyti-
cally formulated, the system differential equation is solved and
presented in Appendix A. The method of computations is
given and illustrated by a numerical example. The matrix
preliminary design procedure is also discussed briefly to
acquaint the designer with the sequence to be followed.

Il. Analysis

Consider an element of a porous matrix as shown in Fig. 1
with a thickness dx placed at a distance x from the inlet fluid
section, with properties C, p, and K for the specific heat,
density and thermal conductivity, respectively. The assump-
tions and the idealizations made in the analysis are as follows:

(1) The heat conduction and fluid flow through the porous
matrix are one-dimensional. The cross sectional area of
matrix is denoted by A.

(2) Thermal, physical, and transport properties of the
matrix and the fluid are assumed to be spatially uni-
form over the entire control volume and independent
of the operating temperature fluctuations.

(3) The fluid temperature at the entrance section (x = 0) is
assumed to be sinusoidal. This is considered an ade-
quate approximation to a temperature profile with a
periodic drift due to the oscillations of ambient air
temperatures, solar intensity, etc.

(4) The matrix boundary is assumed to be well insulated
such that no heat exchange is taking place along the
matrix length with environment.

Denoting the assumed uniform porosity (ratio of fluid
volume in pores to matrix volume) by P, the fluid properties
by the subscript (f), and the solid matrix properties by the
subscript (s), the conservation of energy for the unsteady
one-dimensional flow can be written as follows, for the fluid
flowing in the positive x-direction
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where r'nf is the fluid mass flow rate, A is the average heat
transfer coefficient between the solid matrix and the fluid in
the pores and { is the average fluid surface area of pores per

unit matrix volume. The first term in the left hand side of
Eq. (1a) represents the fluid conduction; the second term
represents convection by the moving fluid; and the third term
represents the heat gained due to the convection-radiation
exchange between the fluid in the pores and matrix solid. Note
that in formulating Eq. (1a), the effective fluid cross sectional
area is P4 and the effective elementary volume is PAdx,
assuming that the pores are uniform and could be lumped
together to form only one large pore next to a one lumped
solid.

For the solid matrix, on the other hand, the energy equa-
tion is written as
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The first term in the left hand side of Eq. (1b) represents the
solid matrix conduction and the second term represents the
heat lost to the fluid by convection-radiation exchange. Equa-
tions (1a) and (1b) represent a system of two simultaneous,
partial differential equations in the two functions T, (x,7) and
T, (x,7).

A cursory look at Eqs. (la) and (1b) shows that the
solution of fluid and solid matrix temperatures will be almost
identical if the fluid rate is very small and that the heat-
convection-radiation term is small. Although Eq. (1a) and (1b)
could have been solved for T; and T in sufficient detail and
accuracy, almost all analytical studies of transpiration-cooled
matrices avoid the resulting complexity by making an addi-
tional simplifying assumption. The latter is to treat the tem-
peratures Tf and 7 as equal at any position throughout the
flow (Refs. 1-6). This assumption may not be very accurate for
matrix heat exchangers (regenerators) with large fluid flow
rates or with a high rate of change of fluid temperatures.
However, this idealization in the mathematical model is still
considered of utmost value as described in Refs. 1-6.

lll. Governing Differential Equation

By adopting the equal temperature assumption given in the
last section, Egs. (1a) and (1b) could be summed to form the
new system differential equation in the temperature T (x,7) as

3T oT oT
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where the subscript (e) refers to the effective fluid-solid matrix
properties, G is the fluid mass flux (rhf/A) and the effective
properties K, and p,C, are determined from:

©
o
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L= 0,CPtpC(1-P)
3
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{

= K,P+K (1-P)

By dividing Eq. (2) by K, the differential equation will be
reduced to

?*T G 9T 19T
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where a, is the “effective” thermal diffusivity for the matrix,
defined by

a, = K,/p,C, )

In order to obtain a general solution to this periodic heat-
transfer problem regardless of the range of operating condi-
tions or the physical units used in computations, a dimension-
less form of Eq.(2) is sought. The dimensionless parameters
for temperature 6, time N and distance X, were finally
selected, after making several dimensioning and substitution
trials, to be as follows:

_T@D-T, )
4, ‘
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where the amplitude A, the mean temperature 7,, and the
frequency f are depicted in Fig. 2. Substituting in Eq. (2) using
Eq. (5), the dimensionless form of the system’s partial differ-
ential equation can be written for the temperature § (X,N)
after some manipulation as

%0 30 _ 39
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where F'is a dimensionless flow parameter, defined as
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_ I fee
Fe J7 @

106

At zero flow factor F, which means at no flow condition or

for the case of a solid surface, the differential equation is -
reduced to the one-dimensional transient heat transfer form

with its known solution (Ref. 7). The existence of the term

F(06/0X), however, makes the solution procedure somewhat

different.

IV. General Solution

The partial differential equation, Eq. (6), could be solved
by using the separation of variables procedure where the
dimensionless temperature 6 (X,N) is written in general as the
product of the two functions ¢ (X) and ¥ (V);i.e.,

6 (X,N) = ¢(X)- ¥ (V) (¥

Substituting in Eq. (6), using the expression in Eq. (8) will
yield, after dividing by 8 for both sides,

60 -F ' () _ ¥ () o)
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The right hand side of Eq. (9) is a function of ¥ only, and
its left hand side is a function of X only, which means that
both sides must be equal to a common constant. The latter can
be any one of four possibilities: a zero, a real positive number
(A?), a real negative number (-7\?) or an imaginary number
(£A%i). The first three possibilities are rejected since they will
result in a nonoscillatory time solution at any position X,
which does not fit the problem boundary conditions. The
fourth possibility, (¥A%7), is the only choice which requires the
solution of the two linear differential equations

¢ (X)-F¢' (X)- EiN)¢(X) = 0 1
s’ (10)
Y- YW =0

At this stage, two solutions will be generated in solving
Eq. (10), using in one the positive sign (+A\?7) and using in the
other the negative sign (- A2i) of the imaginary constant. This
is explained in Appendix A in detail. The general solution of
6 (X,N) is expressed in Appendix A as Eq. (A-14), which is
rewritten as

0 = "X [Bcos (WN - bX)+Dsin AN -bX)] (11)

where B, D are arbitrary constants, and a, b are parameters
given by Eq. (A-6).



V. Boundary Conditions

At the fluid entrance section (X = 0), the periodic tempera-
ture fluctuations, shown in Fig. 2 is written as:

TO7n=T, +Agsin2nfr
or in dimensionless form as
6 (0, N) = sin 22NV

(12)

Substituting in Eq. (11) at X=0 using Eq. (12) and comparing
the sine and cosine coefficients, then

B=0
D=1 (13)
Az =21

Hence, the solution for the dimensionless temperature (6)
becomes

6 = exp(aX)sin 2n N - bX) (14)

This means that as X increases (away from the entrance
section), the amplitude of the sinusoidal fluctuations will
decrease (a is always a negative quantity). Note that both the
fluid and the matrix are assumed to be approximately at the
same temperature.

For the periodic temperature fluctuations, at any section X,
the temperature 7 should be such that

T(x,r) = T(x, 7+nff)

or in dimensionless form

0 (X,N) = 0 (X,N+n) (15)

where # is any integer representing the number of cycles. One
can see that this boundary condition is satisfied when Eq. (14)
is used for any number of cycles n.

A simple corollary could be derived from Eq. (14) about
the mean temperature of the matrix at any distance x. By
obtaining the mean value of the temperature T (x,7) during
one cycle, i.e., [f [, '/ T (x,7)dr], the mean temperature at
the entrance section, T, will be the same for any other

section. The amplitude, however, will decrease as mentioned
above.

VI. Temperature Profile

The solution of the temperature profile along a one-
dimensional flow through a porous matrix is represented by
Eq. (14) and is sketched in Fig. 3. The temperature cycle at a
distance x from the fluid inlet section will experience a time
lag 7*, determined from Egs. (5) and (14) as

bx

2 Fa,

7-*

(16)

The amplitude, on the other hand, will monotonically decrease
by an exponential function, as x increases. At a distance L
from the fluid inlet section, the temperature amplitude will be
A, , given by the logarithmic decrement written as

A
= ! (17)

where the parameters @ and b are determined from Eq. (A-6)
as

¢ =L (pt v 6an)'? coss2
22
b = % (F* + 641%)'* sins)2
(18)
and
8
§ = tan ! —
F2

The relationship between the parameter g and the flow
factor £ can be directly obtained from Eq. (18) as

F 1

= e JFtresnd)

1 503 (19)

The relationship between @ and F is plotted as shown in Fig. 4.
The parameter a is always negative. Increasing the flow factor
F will decrease the absolute value of a, thus requiring a larger
matrix length L to damp a given amplitude ratio. Also, as seen
from Egs. (7) and (17), the use of a porous matrix having large
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thermal conductivity (K,) is preferred in order to reduce the
matrix length L.

Vil. Design Sequence

To illustrate the use of the above equations and the
sequence followed, the following numerical example is given.
Suppose that the air temperature profile at the matrix
entrance section (X=0) has an amplitude A, of 0.05°C and
that the air temperature frequency f could be approximated as
four cycles/hr; then in order to reduce the air temperature
amplitude down to 0.025°C at the exit section, a porous
matrix of length L will be determined according to the
following steps:

(1) Select the material to be used for the solid matrix and
determine the transport properties p, C, K, and « at the
mean operating temperature for both the fluid and
solid matrix.

(2) Determine the porosity P either from specifications or
by choosing a trial value for the design to be changed
later. The equivalent properties p,, C,, K., and a,
could be determined using Egs. (3) and (4).

(3) From the temperature frequency f, mass flux Gfand
properties Cf, K, and @, determine the dimensionless
flow factor F using Eq. (7).

(4) Knowing the flow factor # the parameter a is evaluated
from Eq. (19).

(5) Determine the length L required to satisfy the logarith-
mic decrement [ (4, /A, of Eq. (17).

(6) Repeat the above steps for different porosity values,
matrix materials, air mass flow, frequency, etc., for
parameterization.

Table 1 lists the results of one design trial at an arbitrary
porosity of 0.2. The air mass flux G is calculated as 10,000
kg/(hr. m?) at an air velocity of about 454 ft/min, and at an
air temperature of 20°C (68°F). Four types of matrix
materials were tried in Table 1, cotton wool, steel, brass and
aluminum.

It can be seen from Table 1 that the effective diffusivity «,
is nearly independent of the porosity p for metallic matrices
due to the large solid properties K, and p,C; compared to the
fluid (air). However, as the porosity decreases, the equivalent
thermal conductivity K, decreases and the flow factor F
decreases, which in turn will lead to a smaller matrix length L
for damping the temperature fluctuations. Also, the smaller
the mass flux G, and the higher the frequency f, the smaller
the matrix length L as evidenced from Egs. (7), (17), and (19).
For the above numerical example, a brass matrix with a
porosity of 0.2 and a length of 0.62 m would be theoretically
sufficient to damp the temperature amplitude to one-half.

In practice, a somewhat longer matrix would be required to
offset the differences between matrix and pores temperatures,
which are neglected in Section II. The order of magnitude of
the errors caused by using the approximate differential
equation, Eq. (2), instead of the accurate one, Eq. (1), will be
addressed in another report.

Table 1. Effect of matrix material on required matrix size for the given example

. . N Equivalent Equivalent®
Matrix Solid density, olidsp. Solid thermal —  biipormal  thermal @, Flow
. 3 heat C_, cond. K, e £ a L,
material kg/m Whik °SC W/m°Cs diffusivity a, cond. K, m*/hr factor F m
& m2/hr W/m°C

Cotton wool 80 0.360 0.042 0.0015 0.039 0.0017 1486 -3x 1077 47,600
Steel 7750 0.134 395 0.0381 31.6 0.0382 8.6 -0.06 1.13
Brass 8500 0.107 106.4 0.1170 85.1 0.117 5.6 -0.19 0.62
Aluminum 2700 0.249 196.5 0.2925 157.2 0.2925 4.8 -0.27 0.69

3properties of air at 20°C:

= 1.205 kg/m>, K,

= 0.0771 m?/hr, Cp = 0279 Whikg®C

s = 0.0259 W/m°C

o
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Fig. 3. Temperature oscillation at a distance X from the fluid Fig. 4. Relationship between a and flow factor F for small values
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Appendix A

Solution of the System Differential Equation

The two functions ¢(X) and Y(IV), expressed in Eq. (10),
could be obtained by using either the positive imaginary
constant (i\2) or its negative conjugate (-iA*). The two
possible solutions can be generated for each case as explained
next.

I. Taking the Positive Constant (+ i\?)

In this case, Eq. (10), in the text, can be written as

" (X)-F¢' (X)-i N ¢(X) =0 ]

(A-1)
ACORERRT (Y =0 ‘
The two functions ¢(X) and (V) will then be solved as
¢(X) = B, exp (S, X) + B, exp (5,X)
(A2)

Y(N) = B, exp @AN)

where B, B,, and By are arbitrary constants and §,, S, are
the roots of the auxiliary equation

S2-FS-iN =0 (A-3)

The roots S, and S, can be determined by solving Eq. (A-3) as

_Fx P ra?

Sl ,2 2

(A-4)

Using the complex number algebra, the square root in
Eq. (A-4) can be rewritten in terms of the angle parameter §.
Accordingly, the roots S, and S, are expressed as:

1

S r+bi

1
(A-5)

S, =a-bi
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where

P g + % (F*+16 9" cos 82

u _g-%(p4+16 )\4)1/4 cos §/2 (A-6)

b =~; (F*+16 04" sin8/2
and

o
§ = tan e
2

The solution of the dimensionless temperature ¢ _ using the
positive sign can thus be written as

8, = exp (IN°N) [B) exp (r+bi) X + B, exp (¢ - b)X]

+

(A7)

where the arbitrary constant B, is combined with the
constants B, and B,

Il. Taking the Negative Constant (— i\?)

In this case, Eq. (10) in the text can be written as:

" (X)-F¢' (X)+iN ¢(X) = 0 1
(A-8)
Y+ Y@) =0 $

The functions ¢(X) and Y(NV) after solving Eq. (A-8) will be
written as

1l

$(X) = B, exp (S’ X) + B, exp (S, X)

(A9)

YV) = B, exp (-IN*N)



where B,, B, and B, are arbitrary constants and S'l, S'2 are
the roots of the auxiliary equation

S2-FS+iN =0 (A-10)

The roots §| and S, can be determined by a procedure similar
to that used for §, and §,. Therefore,

S, =r-bi
(A-11)

]

S, =atbi

where the parameters @, b and r are as defined by Eq. (A-6).
The solution of the dimensionless temperature 0_ using the
negative sign can be reduced to

6_ = exp (-I\2N) [B, exp (r- bi) X + B, exp (a + bi) X]
(A-12)

where the arbitrary constants B, and B; combine the constant
B, with B, and B,.

lll. General Solution

By adding the two possible solutions in Egs. (A-7) and
(A-12), the general solution of the dimensionless temperature
(6) can be reduced, after some manipulation, to

6 = exp (rX) - {B, exp [(\*N + bX) i]
+B, exp [F(CN+bX) i}
+exp (aX) {B, exp NN - bX) i)

+B, exp [F(N°N - bX)i]}
(A-13)

Since the value of r (from Eq. (A-6)), is always positive, no
solution would exist from the first term in Eq. (A-13) where it
is not conceivable to have an infinite temperature 6 at X
equals o= This will lead to the elimination of the arbitrary
constants B; and B,. The same conclusion would have been
reached for the second term in Eq. (A-13) if the value of a was
positive at any time. [t can be easily proven that the value of @
from Eq. (A-6) is always negative at any value of / or A. The
general solution of 0, therefore, will be only the second term
of Eq.(A-13), which can be rewritten in the trigonometric
form as

0 = exp (aX) [B cos (\2N - bX) + D sin (\’N - bX)]

(A-14)

where B and D are arbitrary constants to be determined
further from the initial and boundary conditions.
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Definition of Symbols

Cross section area

arbitrary constant

parameter

specific heat

arbitrary constant

dimensionless flow number
frequency

mass flux (flow rate per unit area)

average heat transfer coefficient between solid matrix
and fluid in pores

a
thermal conductivity
matrix thickness

mass flow rate

“effective” property for matrix

fluid

N

T B

=

LT N C R > )

R

Suffixes

N

number of cycles

porosity (pore volume/total volume)
temperature

dimensionless distance

distance measured from the fluid entrance
thermal diffusivity = K/pc

amplitude

angle parameter

average pore surface area per unit matrix volume
dimensionless temperature

parameter

density

time elapsed

functions

solid matrix

M mean or average
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